普通光纤与小芯径实芯光子晶体光纤的 塌孔熔接技术

奚小明¹ 陈子伦¹ 孙桂林^{1,2} 刘晓颀³ 侯 静¹ (¹国防科学技术大学光电科学与工程学院,湖南长沙410073) ²海军航空工程学院基础部,山东烟台264001 ³哈尔海工程大学理学院,黑龙江哈尔海150001

摘要 光子晶体光纤(PCF)和普通光纤的熔接损耗主要来源于两光纤模场直径(MFD)的失配。提出了一种小芯 径光子晶体光纤和大模场直径普通光纤低损耗熔接的方法。利用熔融拉锥机加热光子晶体光纤来精确控制光子 晶体光纤的空气孔塌缩,以增加光子晶体光纤的模场直径,从而降低其与大模场直径普通光纤的熔接损耗。实现 了模场直径为3.94 μm的光子晶体光纤和模场直径为10.4 μm普通光纤的低损耗熔接,最低损耗小于0.2 dB。 关键词 光子晶体光纤;普通光纤;熔接损耗;模场直径

中图分类号 TN252 文献标识码 A doi: 10.3788/CJL201138.0106004

Fusion Splicing of Small Solid Core Photonic Crystal Fibers with Conventional Fibers Based on Controlled Hole Collapse

Xi Xiaoming¹ Chen Zilun¹ Sun Guilin^{1,2} Liu Xiaoqi³ Hou Jing¹

¹ College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China

² Institute of Systems and Mathematics, Naval Aeronautical Engineering Institute, Yantai, Shandong 264001, China
 ³ College of Science, Harbin Engineering University, Harbin, Heilongjiang 150001, China

Abstract The main source of fusion splicing loss between photonics crystal fibers (PCFs) and conventional fibers is from the mismatching of mode field diameters (MFDs) of fibers. We proposed a method to realize low loss splicing between small core diameter PCFs and conventional fibers. Using a fusion taper rig, we controlled hole collapse accurately to enlarge the MFDs of PCFs. As a result, the splicing loss of conventional fiber and PCF with quite mismatch MFDs can be decreased. Using this method a 0.2 dB splicing loss between a PCF with 3.94 μ m MFD and a conventional fiber with 10.4 μ m MFD was obtained experimentally.

Key wordsphotonic crystal fiber; conventional fiber; splicing loss; mode field diameterOCIS codes060.5295; 160.2290; 060.2270; 060.2280; 060.2310

1 引

言

随着光子晶体光纤(PCF)的迅速发展,光子晶体光纤和普通单模光纤(SMF)以及光子晶体光纤间的熔接逐渐得到重视^[1~7],因为熔接与传统的光具组耦合相比具有很多优点:避免了透镜反射,紧凑

性好,可靠性高,对光子晶体光纤起到保护作用,低 的熔接损耗更加凸显了熔接异于光具组耦合的优越 性^[8]。由于光子晶体光纤的包层由很多波长量级的 空气孔组成,这种空气孔在熔接过程中非常容易变 形塌缩,从而导致光子晶体光纤的传导结构破坏,产

收稿日期:2010-04-21; 收到修改稿日期:2010-07-26

基金项目:教育部新世纪优秀人才计划(NCFT-08-0142)资助课题。

作者简介:奚小明(1987—),男,硕士研究生,主要从事光子晶体光纤等方面的研究。E-mail:exixiaoming@163.com 导师简介:侯 静(1975—),女,博士,副教授,主要从事光子晶体光纤等方面的研究。

E-mail:houjing25@sina.com.cn(通信联系人)

生高的熔接损耗。充分利用空气孔的结构变化,也 可以降低光子晶体光纤和普通光纤的熔接损耗。 L. Xiao 等^[9]提出了一种利用普通熔接机通过多次 放电来实现小芯径小空气孔光子晶体光纤的熔接方 法,获得了0.9 dB的熔接损耗。但是这种方法具有 以下缺点:不能用于小芯径大空气孔光子晶体光纤 的熔接;普通熔接机虽然可以通过多次放电来控制 光子晶体光纤空气孔的塌缩,但是不能精确地控制 空气孔的塌缩长度和程度,这样导致获得的最低熔 接损耗仍然较大。

基于上述原因,本文提出了利用熔融拉锥机来 实现光子晶体光纤空气孔的精确塌缩,然后利用普 通熔接机实现塌缩后的光子晶体光纤和普通光纤的 熔接。利用这种方法实现了模场直径(MFD)为 3.94 µm的光子晶体光纤和模场直径为10.4 µm普 通光纤的低损耗熔接,最低损耗小于0.2 dB。熔融拉 锥机不仅可以实现大空气孔光子晶体光纤的塌缩, 更能精确地控制空气孔的塌缩长度和程度。

2 合理的空气孔塌缩,减小模场失配

光子晶体光纤的模场失配损耗可以表示为[10]

$$\alpha = -20 \lg \left(\frac{2 w_{\text{PCF}} w_{\text{SMF}}}{w_{\text{PCF}}^2 + w_{\text{SMF}}^2} \right), \tag{1}$$

式中 wPCF 和 wSMF 分别为光子晶体光纤和普通光纤 的模场直径。通过(1)式可以看到如果两光纤的模 场直径相等或者相差很小,模场失配损耗会很小,这 样只要选择好熔接机的熔接参数,不使光子晶体光 纤的空气孔破坏,熔接的损耗就会很低。然而对于 模场直径相差很大的光纤之间的熔接,在保证光子 晶体光纤空气孔没有破坏的条件下,熔接后的损耗 仍然很大,主要是因为两种不同光纤的模场直径不 匹配所引起的^[1,9]。

光子晶体光纤的性质是由空气孔直径和孔间距 决定的,在一定条件下,使光子晶体光纤的空气孔塌 缩变小可以达到增大模场直径的目的^[11]。对光子 晶体光纤进行加热处理,其加热部分包层中空气孔 由于受到表面张力的作用而塌缩减小。光子晶体光 纤的初始结构参数是孔间距 Λ 。和孔直径 d_0 ,通过 一个过渡区域,结构参数变为孔间距 Λ 和孔直径 d_0 定义塌缩率为1- d/d_0 ,在空气孔d塌缩减小过程 中,孔间距也在一定程度上减小,但光纤横截面的硅 玻璃材料总面积基本保持不变,且满足关系^[11]

$$\left(\frac{\Lambda}{\Lambda_{0}}\right)^{2} = \left[\frac{\sqrt{3}}{2} - \frac{\pi}{4} \left(\frac{d_{0}}{\Lambda_{0}}\right)^{2}\right] \left[\frac{\sqrt{3}}{2} - \frac{\pi}{4} \left(\frac{d}{\Lambda}\right)^{2}\right].$$
(2)

对于模场直径相对较小的光子晶体光纤来说, 通过扩大模场直径就可减小与普通光纤的模场失 配。空气孔塌缩将使光纤对光的束缚能力减弱,导 致模场直径的增大。通过数值计算,可以得到光子 晶体光纤模场直径与空气孔塌缩率的关系以及光子 晶体光纤和普通光纤熔接损耗与塌缩率的关系,如 图1,2所示。从图1中可以看出,开始空气孔塌缩 率较小时,模场直径增加较慢,但当塌缩率较大时, 模场直径会随着塌缩率快速增加。所以精确控制空 气孔的塌缩对准确实现光子晶体光纤和普通光纤模 场匹配至关重要。利用熔接机多次放电来实现低损 耗熔接的方法,由于不能精确控制空气孔的塌缩,往 往无法实现两种光纤的最佳模场匹配,这正是多次 放电法不能进一步减小熔接损耗的原因。

图 2 PCF 和 SMF 熔接损耗与塌缩率的关系 Fig. 2 Splicing loss between PCF and SMF versus collapse ratio

3 光子晶体光纤加热塌孔

光纤拉锥机是利用 H₂-O₂ 焰缓慢加热光纤使 光纤熔化,同时两个电机将光纤向两头拉伸。实现 光子晶体光纤空气孔塌缩时,将拉锥机的拉锥速度 设为 0,即只对光纤加热而不进行拉伸。通过控制 氢气流量和火焰来回扫描的速度可以控制加热区的 温度,从而实现光子晶体光纤空气孔的精确塌缩。

对光子晶体光纤实现塌缩空气孔操作过程中, 由于波导结构的改变将不可避免地引入额外损耗。 但是只要控制好空气孔塌缩区域的结构,在沿光子 晶体光纤方向空气孔是逐渐塌缩的,这个区域称为 过渡区,并且过渡区域满足波导的渐变条件^[12,13], 这种变形在光纤中引起的损耗是可以忽略的。而熔 融拉锥机可以通过不断改变火焰扫描加热的长度来 实现任意长度的塌缩过渡区。如图 3 所示,火焰沿 着行程不断减小的路线对光子晶体光纤进行加热, 达到中间加热时间长,两边加热时间短,从而在两端 实现均匀过渡区的目的。其中 L。为最初火焰加热的长度,也即光纤处理的总长度,L、为最终火焰加热的长度,也即均匀区的长度。过渡区域的长度 L 可表示为L=(Lo-L,)/2。通过文献[12,13],可以计算得到一般渐变条件只需几十微米,而在实际塌缩过程中过渡区域一般是0.5 cm左右,所以一般的塌缩过程都可以满足波导渐变条件,使得塌缩引入的损耗降到最低。同时塌缩过程中在光纤一端入射光,在另一端可时时监测塌缩引进的损耗,结果显示损耗几乎可以忽略。这种方法也克服了电弧放电加热区比较小,造成塌缩过渡区较短和空气孔完全塌缩引入的外加损耗过大的缺点。

图 3 光子晶体光纤加热塌孔示意图 Fig. 3 Schematic of hole collapse of PCF

4 熔接实验结果与分析

实验中用到的光子晶体光纤参数为:空气孔直 径 d_0 = 2.17 μ m,孔间距 Λ_0 = 3.47 μ m。通过多极法 计算可知,在波长1.55 μ m处光子晶体光纤的模场 直径为3.94 μ m,而普通单模光纤 SMF-28 的模场 直径为10.4 μ m,两种光纤的模场直径相差较大,由 (1)式理论计算的熔接损耗为3.58 dB。实验中通过 优化熔接机参数避免空气孔完全塌缩,这两种光纤 的熔接损耗可以达到4.08 dB。为了进一步减小这两 种光纤的熔接损耗,运用普通熔融拉锥机对光子晶体光纤进行塌孔处理,缩小两种光纤的模场失配后再进行熔接,如图 4 所示。首先在塌缩处理的光子晶体光纤一端入射1.55 μ m激光,在塌缩端测得功率 P_1 ,然后与普通光纤熔接,并在普通光纤出射端测得功率 P_2 ,计算可得损耗 $\alpha = -10 \log(P_2/P_1)$ 。由于接入的普通光纤对1.55 μ m激光的损耗很小, 且长度很短(40 cm左右),所以接入普通光纤引入的损耗可以忽略,因此可认为 α 就是熔接点的损耗。

图 4 加热塌孔 PCF 与普通光纤熔接和测量损耗示意图

Fig. 4 Schematic of fusion splicing and loss measurement between hole collapsed PCF and SMF 塌缩过程中,火焰强度和加热时间分别通过调 量为120 mL/min,火焰复扫速度为3000 μn

节氢气流量和火焰复扫次数来控制。实验中氢气流

量为120 mL/min,火焰复扫速度为3000 μm/s,复扫 次数分别为 0,10,18,24,28,32 和 44 次。每种情况

加热的初始长度 $L_0 = 2.6$ cm,最终长度 $L_t = 1.6$ cm,所以过渡区长度 L=0.5 cm。不同复扫次数的加热时间分别为 0,70,130,180,200,220 和 300 s。

通过控制加热时间可以实现光子晶体光纤不同

程度的塌缩,图 5 显示了原始光子晶体光纤的端面 和不同程度塌缩的效果。从图 5 中可以看出空气孔 塌缩很均匀。且由于实验中过渡区控制得当,在空 气孔完全塌缩之前因为塌缩而引入的波导损耗基本 可以忽略。

图 5 不同程度空气孔塌缩的光子晶体光纤截面图 Fig. 5 Micrographs of the PCF cross section with different collapse ratios

(a) 0, (b) 15%, (c) 30%, (d) 48%, (e) 72%, (f) >90%

表 1 熔接损耗与 PCF 加热塌缩时间的关系

Table 1 Splicing loss with different collapse time of PCF

Heating time /s	0	70	130	180	200	220	240	300
Splicing loss /dB	4.08	1.88	1.24	0.90	0.41	0.12	0.56	1.72

通过数值模拟,当空气孔塌缩率为72%时光子 晶体光纤的空气孔塌缩到只有0.61 μm,模场直径 会增大到10.4 μm。此时与普通单模光纤理论的熔 接损耗降为0 dB。对光子晶体光纤进行不同程度的 塌缩,然后利用普通电弧熔接机与普通光纤进行熔 接,并测量每种情况的熔接损耗,结果如表1所示。

刚开始熔接损耗会随着加热时间的增加而降低,但超过一定阈值(加热时间220 s)之后,熔接损耗随着处理时间的增加而增大。这主要是因为继续加热处理,空气孔塌缩率大于72%,光子晶体光纤的模场直径开始超过普通光纤的模场直径,由图1,2中可以看出模场失配会迅速增大,熔接损耗也相应增大。实验中利用这种方法在加热时间为220 s的情况下实现了最低0.12 dB的熔接损耗。

5 结 论

对光子晶体光纤和普通光纤的熔接进行了详细

的研究,提出通过熔融拉锥机加热来精确控制空气 孔塌缩的方法,即增大小芯径光子晶体光纤模场直 径,从而减小与普通光纤熔接因模场失配而引起的 高熔接损耗;利用这种方法实现了模场直径为 3.94 μm的小芯径光子晶体光纤和模场直径为 10.4 μm普通光纤的低损耗熔接,最低损耗小于 0.2 dB。

参考文献

- Zhang Wei, Zhang Lei, Chen Shi *et al.*. Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber [J]. *Chinese J. Lasers*, 2006, **33**(10):1389~1392
 张 巍,张 磊,陈 实 等. 高非线性光子晶体光纤与普通光纤 低损耗熔接实验[J]. 中国激光, 2006, **33**(10):1389~1392
- 2 Guo Tieying, Lou Shuqin, Li Honglei *et al.*. Low loss arc fusion splice of photonic crystal fibers [J]. *Acta Optica Sinica*, 2009, 29(2):511~516
 2 State of the state

郭铁英,娄淑琴,李宏雷等.光子晶体光纤的低损耗电弧熔接方案[J].光学学报,2009,**29**(2):511~516

3 Fu Guangwei, Bi Weihong, Jin Wa. Heat transfer of fusion splicing photonic crystal fiber [J]. Chinese J. Lasers, 2009, 36

(9):2372~2379

- 付广伟,毕卫红,金 娃. 待熔光子晶体光纤中的热传导特性 [J]. 中国激光, 2009, **36**(9):2372~2379
- 4 J. T. Lizier, G. E. Town. Splice loss in holey optical fibers [J]. IEEE Photon. Technol. Lett., 2001, 13(8):794~796
- 5 L. H. Yeuk, Wei Jin, Jian Ju et al.. Loss analysis of singlemode fiber/photo-crystal fiber splice [J]. Microwave and Optical Technology Lett., 2004, 40(5):378~380
- 6 B. Bourliaguet, C. Paré, F. Émond et al.. Microstructures fiber splicing [J]. Opt. Express, 2003, 11(25):3412~3417
- 7 Zilun Chen, Chunle Xiong, Limin Xiao et al.. More-thanthreefold expansion of highly-nonlinear PCF cores for low-loss fusion-splicing [J]. Opt. Lett., 2009, 34(14):2240~2242
- 8 P. J. Bennett, T. M. Monro, D. J. Richardson. Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization [J]. Opt. Lett., 1999, 24(17):1203~1205

- 9 L. Xiao, M. S. Demokan, W. Jin *et al.*, Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect [J]. J. Lightwave Technol., 2007, 25 (11):3563~3568
- 10 J. H. Chong, M. K. Rao. Development of a system for laser splicing photonic crystal fiber [J]. Opt. Express, 2003, 11(12): 1366~1371
- 11 J. Lægsgaard, A. Bjarklev. Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study [J]. Opt. Commun., 2004, 237:431~435
- 12 G. E. Town, J. T. Lizier. Tapered holey fibers for spot-size and numerical-aperture conversion [J]. Opt. Lett., 2001, 26(14): 1042~1044
- 13 M. J. Gander, R. McBride, J. C. Jones *et al.*, Measurement of the wavelength dependence of beam divergence for photonic crystal fiber [J]. *Opt. Lett.*, 1999, **24**(15):1017~1079